
Combining Model-Based Policy Search with Online Model Learning for
Control of Physical Humanoids

Igor Mordatch, Nikhil Mishra, Clemens Eppner, Pieter Abbeel
Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA.

Abstract— We present an automatic method for interactive
control of physical humanoid robots based on high-level tasks
that does not require manual specification of motion trajectories
or specially-designed control policies. The method is based on
the combination of a model-based policy that is trained off-line
in simulation and sends high-level commands to a model-free
controller that executes these commands on the physical robot.
This low-level controller simultaneously learns and adapts a
local model of dynamics on-line and computes optimal controls
under the learned model. The high-level policy is trained using
a combination of trajectory optimization and neural network
learning, while considering physical limitations such as limited
sensors and communication delays. The entire system runs
in real-time on the robot’s computer and uses only on-board
sensors. We demonstrate successful policy execution on a range
of tasks such as leaning, hand reaching, and robust balancing
behaviors atop a tilting base on the physical robot and in
simulation.

I. INTRODUCTION

The ability to control bipedal robots to autonomously
perform a wide variety of tasks is one of the standing grand
challenges of robotics [24]. Furthermore, if we wish for
these robots to be truly autonomous and be widely used, we
cannot rely on extensive hand-design and manual engineering
specific to each task or robotic platform.

Controlling humanoid robots is particularly difficult be-
cause under-actuation can quickly lead to failures such as
robot falling down, leading to a region of successful move-
ment strategies that is very narrow and prevents exploration.
Additionally, humanoid robot dynamics - especially contact
dynamics - are very difficult to model and typically fall
outside the class of models provided by physics simulators.
We are also interested in developing methods applicable to
lower cost robotic platforms using only on-board sensors as
opposed to an instrumented laboratory setting. This comes
with additional challenges: limited and noisy sensing capa-
bilities, limited communication bandwidth and delays, and
limited computational performance.

We tackle these challenges with a combination of model-
based and model-free techniques. High-level movement
strategies are discovered using a neural network policy
trained offline from model-based trajectory optimizations
performed in simulation, following [16]. The simulation
environment allows for effectively unlimited exploration and
can discover complex movement behaviours [18]. The re-
sulting policy can be thought of as an imaginary process
that specifies how the movement should progress, but not
the details of how to accomplish it. The high-level policy is

combined with a low-level model-free controller that spec-
ifies the detailed controls sent to the robot. This controller
simultaneously learns a local dynamics model on-line and
the optimal control signal under that model to accomplish the
high-level commands given by the policy. Policy execution,
model learning and control all execute in closed-loop and
feed back into each other. We also show that for a high-level
policy to be successful on a physical robot, it must be trained
with consideration of limitations such as sensor availability
and communication bandwidth. Thus we explicitly model
these limitations in our simulation.

As a result, we are able to stably execute policies on a
physical robot that perform tasks such as significant torso
orientation changes or hand reaching movements that do not
require knowledge about the global position of the hand. We
also present robust balancing strategies that adapt to moving
and tilting ground and take protective footsteps in simulation
(we believe the latter can be done on a physical robot once
we acquire foot force sensors).

II. RELATED WORK

To date, a large number of effective approaches to con-
trolling bipedal humanoid robots rely on either execution
of pre-created movement trajectories, or manually designed
controllers and regulation of control features [2], [5], [11],
[20], [21], [24], [25]. However, such controllers require
manual design and engineering efforts specific to each task
and robot platform and can lack robustness. Some control
approaches break up the control problem into a high-level
and low-level components, as we do [3], [17], [22], but again
rely on manual design in both parts of the hierarchy.

We instead follow an approach of learning control poli-
cies based on simulation, following recent approaches [14],
[16], [23]. However, transferring these approaches to control
physical humanoids is not straightforward. [15] learn time-
varying Gaussian mixture dynamics model for a fixed-based
PR2 robot based on iteratively updating control policy and
dynamics model. A similar approach using Gaussian Process
policy and dynamics model is used by [4] for an inverted pen-
dulum and fixed-base robot arm. The issue is that executing
such control policies on under-actuated bipeds can quickly
lead to falling and destabilization and does not provide useful
data to learn dynamics from. Furthermore, contact events on
legged robots present discontinuities which make it difficult
to learn a model that is globally accurate, especially when
it is used with a trajectory optimizer which may exploit the
errors in the dynamics model.

Instead of learning a global dynamics model from training
motions off-line, it is possible to learn and adapt a locally-
accurate model on-line during actual task execution. This
is the approach we take. The local models can either be
linear [10], [28], or nonlinear [13]. However, such models
were again applied to fixed-base systems and used for
executing pre-specified motions. We must include a more
model-based high-level policy that will perform complex
high-level movements that will satisfy the task.

III. MODEL-BASED POLICY SEARCH WITH TRAJECTORY
OPTIMIZATION

Fig. 1. Overview of our policy learning approach. A neural network training
machine (network) generates network parameters θ representing the policy
learned from a robot’s optimal trajectories X. These parameters are used
for generating new trajectories close to the policy (optimize), and passed as
high-level controls for the physical robot.

In this section, we describe how to search for high-level
control policies in simulation given a model of the robot’s
dynamics, following the approach in [16]. Let the full state of
the robot be defined as [r q f], where r ∈ R6 is the root posi-
tion and orientation of the robot, q are the joint angles of the
robot and f are the contact forces being applied on the robot
by the ground. The motion of the robot is a state trajectory
of length T defined by X =

[
r0 q0 f0 ... rT qT fT

]
. Let

X1, ...,XN be a collection of N trajectories, each starting
with different initial conditions and executing a different task
(such as moving the robot’s hand to a particular location).

We introduce a neural network control policy πθ : s 7→
a parametrized by neural network weights θ that maps a
sensory state of the robot s at each point in time to a high-
level control action a that controls the robot. In general, the
sensory state can be designed by the user to include arbitrary
informative features, but in this work we only use the on-
board sensors available to our robot:

st =
[
qt q̇t ot ωt

]
,

where q̇t denotes the velocity of q at time t. o and ω are
the acceleration due to gravity and angular acceleration of
the robot respectively, both typical components of an inertial
measurement unit (IMU). Note that additional sensors (such
as pressure, motor torque, or motion capture markers) can

easily be incorporated into this framework without any
special handling.

The high-level control action output by the policy contains
the next timestep’s joint position and velocity

at =
[
qt+1 q̇t+1

]
.

With this representation of the action, the policy directly
commands the desired trajectory of the robot, rather than
commanding low-level features such as motor torques. Thus,
our network learns both optimal controls and a model of
simulator dynamics. Note that the policy does not command
root position or orientation, as we cannot directly sense these
features on the physical robot and thus cannot regulate them.

Let Ci(X) be the total cost of the trajectory X, which
rewards accurate execution of task i and physical correctness
of the robot’s motion. We want to jointly find a collection
of optimal trajectories that each complete a particular task,
along with a policy πθ that is able to reconstruct the sense
and action pairs st(X) and at(X) of all trajectories at all
timesteps:

minimize
θ X1 ... XN

∑
i

Ci(X
i)

subject to ∀ i, t : at(Xi) = πθ(s
t(Xi)).

(1)

The optimized policy parameters θ can then be used to
execute policy in real-time and interactively control the robot
by the user. Unlike non-parametric methods like motion
graphs [12] or Gaussian processes [4], we do not need to
keep any trajectory data at policy execution time.

A. Stochastic Policy Inputs

Injecting noise has been shown to produce more robust
movement strategies in optimal control [9], [26] and reduce
overfitting and prevent feature co-adaptation in neural net-
work training [7]. We inject noise in a principled way to aid
in learning policies that do not diverge when rolled out at
execution time.

In particular, we inject additive Gaussian noise into the
sensory inputs s given to the neural network. Let the sensory
noise be denoted ε ∼ N (0,σ2

εI), so the resulting noisy
policy inputs are s + ε. This change in input also induces
a change in the optimal action to take. If the noise is small
enough, the optimal action at nearby noisy states is given by
the first order expansion

a(s + ε) = a + asε, (2)

where as (alternatively da
ds) is the matrix of optimal feedback

gains around s. These gains can be calculated as a byprod-
uct of trajectory optimization as described in section IV.
Intuitively, such feedback helps the neural network trainer
to learn a policy that can automatically correct for small
deviations from the optimal trajectory.

B. Delayed and Rate-Limited Sensory Inputs and Controls

The physical robots we are interested in exhibit significant
limitations in the rate at which sensors and controls are
communicated to and from the robot. As a consequence,

Fig. 2. For a given optimal trajectory X, the optimal actions a change in
the neighborhood of s to compensate for deviation ε.

the policy cannot finely micromanage the behavior of the
robot. Furthermore, the policy must output actions based
on sensory information that is significantly delayed. On
our experimental robot platform Darwin-OP, these delays
are around 40-60 milliseconds. As we will show in section
VII, if we ignore these effects during trajectory optimization
and policy learning, our policies quickly destabilize when
executed on either the physical system or in a simulated
environment with delays. Researchers in biomechanics and
graphics have found that explicitly incorporating sensory
delays has an impact on the resulting movement behaviors
[6], [27]

To incorporate communication rate limits and delays
into our method, we introduce communication timesteps
t1, ..., tK which are a subset of 1, ..., T that correspond
to times when sensors are read and controls are sent (on
our robot both of these events happen simultaneously). The
constraint in (1) is then adjusted to

∀ i, t : at(Xi) = πθ(s
tk(Xi)) (3)

Where tk is the closest communication timestep preceding
t. In this case, the constraint couples the interaction between
two different timesteps (t and tk), but can still be incorpo-
rated into a trajectory optimization problem with efficient
solution methods, as we will see in IV. In our experiments,
we select tk to be evenly-spaced 50 milliseconds apart
throughout the trajectory.

C. Block-Alternating Stochastic Optimization

The resulting constrained optimization problem (1) is
nonconvex and too large to solve directly. Following [16], we
replace the hard equality constraint with a quadratic penalty
with weight α:

R(s,a, θ, ε) =
α

2
‖(a + asε)− πθ(s + ε)‖2 ,

leading to the relaxed, unconstrained objective

minimize
θ X1 ... XN

∑
i

Ci(X
i) +

∑
i,t

R(stk(Xi),at(Xi), θ, ε).

We then proceed to solve the problem in block-alternating
optimization fashion, optimizing for one set of variables
while holding others fixed. In particular, we independently
optimize for each Xi (trajectory optimization) and for θ (neu-
ral network regression) and resample new noise instantiation
ε. As a result, we reduce a complex policy search problem
in (1) to an alternating sequence of independent trajectory
optimization and neural network regression problems, each
of which are well-studied and allow the use of existing im-
plementations. For all experiments, we used neural network
policy with 2 hidden layers of 100 units each.

IV. MODEL-BASED TRAJECTORY OPTIMIZATION

We wish to find trajectories in simulation that start with
particular initial conditions and execute the task, while satis-
fying physical realism of the robot’s motion. The existing ap-
proach we use is Contact-Invariant Optimization (CIO) [18],
which is a direct trajectory optimization method based on
an inverse dynamics model. Physical realism is achieved by
satisfying equations of motion, non-penetration, and force
complementarity conditions at every point in the trajec-
tory [19]:

H(q)q̈ + C(q, q̇) = τ + F>(q, q̇)f (4)
d(q) ≥ 0

d(q)>f = 0

f ∈ K(q),

where d(q) is the distance of the contact to the ground and
K is the contact friction cone.

The constraints in (4) are implemented as soft constraints,
as in [18] and are included in C(X). Initial conditions are
also implemented as soft constraints in C(X). Additionally
we want to make sure the task is satisfied, such as leaning
to a particular orientation or moving a hand to a particular
location while minimizing effort. These task costs are the
same for all our experiments and are described in section VII.

The trajectory optimization problem consists of finding
the optimal trajectory parameters X that minimize the total
cost C:

X∗ = argmin
X

C(X),

which is solved using Gauss-Newton method via the follow-
ing iterative steps (as in [16]):

X∗ = X∗ − C−1XXCX.

In addition to the optimal trajectory, optimal feedback
gains are necessary to incorporate sensory noise in (2). They
are calculated as a byproduct of direct trajectory optimization

as = aXC
−1
XXs>X(sXC

−1
XXs>X +

1

λ
I)−1,

where λ is a parameter that controls how aggressive feed-
back gain corrections are. See [16] for more details and a
derivation. Note that sX, aX and C−1XX are already calculated
as part of trajectory optimization. Thus, computing optimal
feedback gains comes at very little additional cost.

Fig. 3. An overview of our online model learning and control approach,
consisting of policy evaluation trained offline in Sec. III, online dynamics
model updates (Eq. 5) and online control (Eqs. 6,7)

V. ONLINE MODEL LEARNING AND CONTROL

After finding an optimal control policy πθ in a simulated
setting, we wish to apply this policy for control of a physical
robot. Recall that πθ commands high-level control features
a such as future joint positions and velocities. It does not
directly control the joint torques of the robot, because small
differences between simulated and physical model and even
small differences between trials can quickly propagate and
lead to failure such as robot falling down. For example, if
we attach extra weight to the robot in the form of a battery
or if ground friction changes slightly, this would change the
torques that must be applied. But we wouldn’t want to re-
train the entire policy for such small changes. Instead, we
propose a method to command these features based on online
model learning which separates low-level model and trial
details from the high-level policy learning.

Assume the physical robot we wish to control is governed
by the following forward dynamics equation:

st+1 = g(st,ut),

where s is the available sensory information and u are the
controls of the robot. These dynamics may differ from the
simulated dynamics equations (4) due to differences between
simulation and the physical world. The policy outputs the
desired next state s̄t+1 which can be used with short-horizon
optimization to find the physical robot’s control as

ut(s̄t+1) = minimize
u

1

2

∥∥g(st,u)− s̄t+1
∥∥2 .

A. Learning Linear Dynamics

The class of dynamical systems we restrict ourselves to
are linear dynamics

g(st,ut) = Jss
t + Juu

t,

where [Js Ju] are the system parameters to be learned.
Linear dynamics have the advantage of computationally-
efficient learning and optimal control calculation, unlike
other models, such as neural networks or Gaussian processes.
This is important if the controller is executed on-board low-
cost robots, such as Darwin-OP, that lack large computational
resources. The disadvantage is that linear dynamics are not
expressive enough to be valid in all parts of the state space.
However, if the linear model parameters are updated and re-
learned online, they do act as locally-valid models, as we

show in section VII, and are appropriate for short-horizon
predictive control.

We update the model parameters based on the previous
sensory state and control and the consequent sensory state
(st−1, ut−1, st) similar to [10], [28]. Because only one
such data instance is not enough to define the dynamics, we
assume the dynamics parameters change smoothly and keep
the parameters close to their previous values. Denoting the
concatenated parameter matrix [Js Ju] as J,

Jt = minimize
J

1

2
||J [s u]

t−1 − st||2 +
α

2
||J− Jt−1||2,

Where α is a smoothness weight. The result is a linear system
that lends itself to efficient rank one updates [1], [10]

Jt = Jt−1 +
st − Jt−1 [s u]

t−1

|| [s u]
t−1 ||2 + α

[s u]
t−1

. (5)

With this dynamics model, the optimal control sent to the
robot can be efficiently calculated as solution to a small linear
system:

W(s̄t+1 − Jtss
t) = WJtuu

t. (6)

λut−1 = λIut (7)

where λ is a regularization constant (typically 0.6) and
W is a diagonal scaling matrix. This matrix ensures that
joint positions and velocities have roughly the same unit
magnitude, and use 1 for position and 0.05 for velocity
scaling.

It is important to have some amount of variation in the
controls and sensory states to be able to predict the effects
of controls on the next state and ensure the linear system
solved by (5) is not singular. Thus, we add a small amount
of motor noise to ut before sending it to the robot. The noise
is zero-mean Gaussian with standard deviation 0.01 radians.

VI. SYSTEM DETAILS

A. Darwin Robot and Simulator Model
The Darwin-OP2 humanoid biped by Robotis Ltd. has 26

DOFs (6D root pose and 20 actuated joints). Each actuator
is a MX-28 servo motor with position measurement of 12-
bit resolution over 2π radians that is position controlled. An
integrated inertial measurement unit in the torso provides 3-
axis acceleration and angular velocity. The sensor data output
and control input are processed through an x86 1.6 GHz dual
core CPU on-board the robot.

While the Darwin-OP2 is a convenient, low-cost biped
platform, it exhibits a number of limitations. The control
inputs to the servo motors are the set point and P gain, KP ,
for a PID controller, which is closed-source. Secondly, while
each body part of the Darwin robot can be disassembled and
its mass measured, the center of mass of each body part
and thus the entire robot is harder to predict. Other potential
sources of modelling error include backlash where the motor
gear teeth are not in contact with each other when reversing.
Estimating and modelling backlash is difficult [8].

The Darwin model we use in simulation includes all 26
degrees of freedom of the physical robot and is based on
CAD created specifications to manufacture the robot.

B. Jacobian Initialization

Prior to executing the desired motion policies, we perform
a ”motor babbling” phase in order to find a good initializa-
tion for linear system parameters J. Babbling is done by
adding temporally smoothed Gaussian noise to zero pose set
points over a period of 30 seconds. In our initial trials, we
suspended the robot in the air and initialized the parameters
using J = 0. However, we find that initializing from:

J(0) =

[
I 0 0
−I I I

]
produces comparable results, but requires fewer iterations to
converge because the Jacobian consistently takes a structure
similar to this. Also, to better approximate the dynamics of
the leg joints when in contact with the ground, we prefer
to execute motor babbling with the robot standing upright.
Rather than perform babbling before each policy execution,
we save the resulting Jacobian after one session and use it
as the initialization for subsequent policy executions.

During the babbling phase, the linear system we learn
is exposed to changes in state of a certain magnitude,
||st − st−1|| ≈ ε. To prevent the robot from destabilizing
and damaging itself should the policy command a far-away
desired state, we employ a ”trust region” before solving for
ut. We cap the values of s̄t+1 so that no element of |st−s̄t+1|
exceeds the ε from the babbling phase.

VII. EXPERIMENTS

We have tested our method on several tasks both in sim-
ulation and on the physical robot. We see complex motions
emerging to accomplish the tasks due to high-level policy
that greedy controllers do not exhibit.

Fig. 4. Examples of leaning and hand reaching interactive policy execution
on the physical robot.

A. Leaning Task

In this experiment, we trained a policy to interactively
track the global orientation of the robot’s torso, as estimated
by the on-board IMU accelerometer. In addition to the
policy inputs specified in section III, the policy takes a user-
specified unit vector representing the desired up-direction
of the torso. Examples of applying the leaning policy in
simulation and in combination with the linear dynamics

model on the physical robot are shown in Fig. 4. Fig. 5 shows
how the physical robot is capable of tracking the desired
torso orientation despite noise in the accelerometer readings.

Fig. 5. IMU orientation readings (blue) compared with desired orientation
commanded by the user (red) during a leaning task. Orientation is tracked
successfully despite the significant amount of noise in the sensors.

B. Hand Reaching Task

In a second experiment, a policy was trained to inter-
actively follow a desired hand position in workspace. In
contrast to the first experiment, the controlled quantity is
not directly observable. Implicitly the policy learns the
forward kinematics and estimates the hand position from
joint encoders without the need to provide motion capture
information for the hand location. The policy learns the
best representation automatically given the task and available
sensory information. Examples of executing the learned
reaching policy in simulation and on the physical system
are shown in Fig. 4

C. Tilting Base Balancing

In the third experiment, the goal is to keep the robot stand-
ing upright while the ground the robot stands on is tilting
or moving. Successful execution of this policy required the
use of force sensors, which our physical robot does not have
and which is why we only display results in simulation. We
do incorporate sensory noise and delays when executing the
policy in simulation.

Fig. 6. The tilting base experiment in simulation.

D. Analysis of Linear System Learning

We have investigated the linear system parameters we
learn and how these parameters adapt over time. In Fig. 7,

we show how the entries of the Jacobian change during the
initialization phase and during policy execution. An example
of the matrix we typically see during policy execution on
the robot is shown in Fig. 7. The Jacobian consistently
converges to a block-diagonal structure during the motor
babbling phase, and still continues to adapt during policy
execution. We also find that the structure of the learned
Jacobian matrix is largely independent of the noise level and
P gains used, and we have used values ranging from σ = 0.1,
KP = 16 to σ = 0.5, KP = 4 with similar results.

Fig. 7. The entries of the Jacobian matrix evolving over time, and a
typical Jacobian matrix J = [Js Ju] at the beginning of policy execution.
The Jacobian is initialized from zero. Policy execution begins at t ≈ 190.

Fig. 8. Predictions of future sensor trajectories according to learned linear
dynamics (V-A). The plot shows positions of the three arm joints during
a reaching task. Dashed lines indicate timesteps from which the linear
dynamics were extrapolated into the future.

We also observe that our dynamics-learning technique can
adapt to different values of the P gain parameter. We can vary

KP between 8 and 16 with similar results, and the Jacobian
parameters appear to re-converge within the first few seconds
of execution. In figure 9, we show that varying KP results in
almost-identical results for an execution of the leaning task.
Generally speaking, adjusting the P gain affects how stiff
or compliant the robot is during policy execution, but the
Jacobian learns to adapt and perform successfully in spite of
this variation.

E. Comparison to direct policy control and fixed linear
system control

To verify that the online dynamics learning is crucial to
successfully execute the policies on the real robot, we evalu-
ate two variations: training a policy that directly outputs low-
level motor controls and not updating the linear dynamics
parameters online.

We first try to train policies that directly output motor
controls (the PID set points). On both the reaching and
leaning tasks discussed in VII-A, VII-B, they succeed in
some situations, but we notice that these policies require
precise fine-tuning of the P gain parameter. If the value of
KP is too large, the policy destabilizes and we see rapid
oscillation of the joints. Conversely, if KP is too small, the
robot is unable to keep itself upright.

Next, we try the leaning task with a fixed linear system.
We use the Jacobian that results from the motor babbling
phase, but do not update it during policy execution. The
robot is unable to hold an upright pose, and falls over within
3 seconds (see Fig. 9).

The failures of these experiments suggest that online
dynamics learning is necessary to account for discrepancies
between the simulation and the physical robot, and to correct
for errors that may occur during policy execution. Moreover,
as Fig. 7 indicates, the dynamics that we are trying to learn
can vary with time, and it is important to update the Jacobian
using the most recent sensor measurements.

Fig. 9. The IMU accelerometer readings during an execution of the leaning
policy. Varying the P gain (red, green, and blue) does not significantly affect
the overall behavior. In contrast, the robot quickly falls over (cyan) when
we do not update the Jacobian after policy execution begins. The dashed
line indicates the end of the ”babbling” phase.

VIII. DISCUSSION

In this paper, we presented an automatic method for inter-
active control of physical humanoid robots and demonstrated

its effectiveness on a range of tasks. In the future, we wish
to further increase the range of tasks to those that have
been previously demonstrated in simulation, such as walking,
getting up, and object manipulation.

Our method is able to operate using only the low-
performance computer and sensors available on board the
robot. This allows the possibility of the robot being deployed
in unstructured outdoor environments in the future. However,
the sensors we currently use are quite minimal and noisy,
precluding the execution of more sophisticated policies, such
as titling base balancing or walking. We are looking to
augment on-board sensors with commercially available foot
sensors and incorporate the robot’s camera information into
our policies.

While linear dynamics models have worked successfully
as local models in the experiments we attempted, it would
be interesting to explore other model classes, such as neural
network dynamics models trained on-line.

IX. ACKNOWLEDGEMENTS

We thank Kendall Lowrey and Emo Todorov for inspiring
technical discussions. This research was funded by Defense
Advanced Research Projects Agency.

REFERENCES

[1] C. G. Broyden, “A class of methods for solving nonlinear simultaneous
equations,” Mathematics of computation, pp. 577–593, 1965.

[2] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal
robots based on passive dynamic walkers,” Science, 2005.

[3] S. Coros, P. Beaudoin, and M. van de Panne, “Generalized biped
walking control,” ACM Transctions on Graphics, vol. 29, no. 4, p.
Article 130, 2010.

[4] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian
processes for data-efficient learning in robotics and control,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 37, no. 2, pp. 408–423,
2015. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2013.218

[5] C. Gehring, S. Coros, M. Hutter, M. Bloesch, M. Hoepflinger, and
R. Siegwart, “Control of dynamic gaits for a quadrupedal robot,” in
Robotics and Automation (ICRA), 2013 IEEE International Conference
on, May 2013, pp. 3287–3292.

[6] H. Geyer and H. Herr, “A muscle-reflex model that encodes principles
of legged mechanics produces human walking dynamics and muscle
activities,” Neural Systems and Rehabilitation Engineering, IEEE
Transactions on, vol. 18, no. 3, pp. 263–273, 2010.

[7] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[8] G. Hovland, S. Hanssen, E. Gallestey, S. Moberg, T. Brogardh,
S. Gunnarsson, and M. Isaksson, “Nonlinear identification of backlash
in robot transmissions,” in Proceedings of the 33rd ISR (International
Symposium on Robotics), 2002.

[9] D. Huh and E. Todorov, “Real-time motor control using recurrent neu-
ral networks,” in Adaptive Dynamic Programming and Reinforcement
Learning, 2009. ADPRL ’09. IEEE Symposium on, March 2009, pp.
42–49.

[10] M. Jgersand, O. Fuentes, and R. Nelson, “Experimental evaluation
of uncalibrated visual servoing for precision manipulation,” in , 1997
IEEE International Conference on Robotics and Automation, 1997.
Proceedings, vol. 4. IEEE, Apr. 1997.

[11] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt,
“Capturability-based analysis and control of legged locomotion. part
1: Theory and application to three simple gait models,” International
Journal Robotics Research, 2012.

[12] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” ACM trans-
actions on graphics (TOG), vol. 21, no. 3, pp. 473–482, 2002.

[13] I. Lenz, R. Knepper, and A. Saxena, “Deepmpc: Learning deep latent
features for model predictive control,” in RSS, 2015.

[14] S. Levine and V. Koltun, “Learning complex neural network policies
with trajectory optimization,” in ICML ’14: Proceedings of the 31st
International Conference on Machine Learning, 2014.

[15] S. Levine, N. Wagener, and P. Abbeel, “Learning contact-rich
manipulation skills with guided policy search,” in IEEE International
Conference on Robotics and Automation, ICRA 2015, Seattle, WA,
USA, 26-30 May, 2015, 2015, pp. 156–163. [Online]. Available:
http://dx.doi.org/10.1109/ICRA.2015.7138994

[16] I. Mordatch, K. Lowrey, G. Andrew, Z. Popovic, and E. Todorov, “In-
teractive control of diverse complex characters with neural networks,”
in Advances in Neural Information Processing Systems (NIPS), 2015.

[17] I. Mordatch, M. de Lasa, and A. Hertzmann, “Robust Physics-Based
Locomotion Using Low-Dimensional Planning,” ACM Transactions on
Graphics, vol. 29, no. 3, 2010.

[18] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Trans.
Graph., vol. 31, no. 4, pp. 43:1–43:8, July 2012. [Online]. Available:
http://doi.acm.org/10.1145/2185520.2185539

[19] M. Posa and R. Tedrake, “Direct trajectory optimization of rigid body
dynamical systems through contact,” in Algorithmic Foundations of
Robotics X. Springer, 2013, pp. 527–542.

[20] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A
step toward humanoid push recovery,” in Humanoid Robots, 2006 6th
IEEE-RAS International Conference on, Dec 2006, pp. 200–207.

[21] M. H. Raibert, Legged Robots That Balance. Cambridge, MA, USA:
Massachusetts Institute of Technology, 1986.

[22] J. R. Rebula, P. D. Neuhaus, B. V. Bonnlander, M. J. Johnson, and
J. E. Pratt, “A controller for the littledog quadruped walking on
rough terrain,” in Robotics and Automation, 2007 IEEE International
Conference on. IEEE, 2007, pp. 1467–1473.

[23] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel,
“Trust region policy optimization,” CoRR, vol. abs/1502.05477, 2015.
[Online]. Available: http://arxiv.org/abs/1502.05477

[24] R. Tedrake, M. F. Fallon, S. Karumanchi, S. Kuindersma, M. E.
Antone, T. Schneider, T. M. Howard, M. R. Walter, H. Dai, R. Deits,
M. Fleder, D. Fourie, R. Hammoud, S. Hemachandra, P. Ilardi,
C. Pérez-D’Arpino, S. Pillai, A. Valenzuela, C. Cantu, C. Dolan,
I. Evans, S. Jorgensen, J. Kristeller, J. A. Shah, K. Iagnemma,
and S. J. Teller, “A summary of team mit’s approach to the
virtual robotics challenge,” in 2014 IEEE International Conference
on Robotics and Automation, ICRA 2014, Hong Kong, China,
May 31 - June 7, 2014, 2014, p. 2087. [Online]. Available:
http://dx.doi.org/10.1109/ICRA.2014.6907140

[25] M. Vukobratovic and B. Borovac, “Zero-moment point thirty-five years
of its life,” International Journal of Human Robotics, 2004.

[26] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Optimizing walking
controllers for uncertain inputs and environments,” ACM Trans.
Graph., vol. 29, no. 4, pp. 73:1–73:8, July 2010. [Online]. Available:
http://doi.acm.org/10.1145/1778765.1778810

[27] J. M. Wang, S. R. Hamner, S. L. Delp, V. Koltun, and M. Specifically,
“Optimizing locomotion controllers using biologically-based actuators
and objectives,” ACM Trans. Graph, 2012.

[28] M. C. Yip and D. B. Camarillo, “Model-Less Feedback Control of
Continuum Manipulators in Constrained Environments,” IEEE Trans-
actions on Robotics, vol. 30, no. 4, pp. 880–889, Aug. 2014, 00005.

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.218
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.218
http://dx.doi.org/10.1109/ICRA.2015.7138994
http://doi.acm.org/10.1145/2185520.2185539
http://arxiv.org/abs/1502.05477
http://dx.doi.org/10.1109/ICRA.2014.6907140
http://doi.acm.org/10.1145/1778765.1778810

	Introduction
	Related Work
	Model-Based Policy Search with Trajectory Optimization
	Stochastic Policy Inputs
	Delayed and Rate-Limited Sensory Inputs and Controls
	Block-Alternating Stochastic Optimization

	Model-Based Trajectory Optimization
	Online Model Learning and Control
	Learning Linear Dynamics

	System Details
	Darwin Robot and Simulator Model
	Jacobian Initialization

	Experiments
	Leaning Task
	Hand Reaching Task
	Tilting Base Balancing
	Analysis of Linear System Learning
	Comparison to direct policy control and fixed linear system control

	Discussion
	Acknowledgements
	References

